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CP Violation in the B-Meson System

Abstract

This review of CP violation in the B-meson system appeared as an appendix to the
Princeton U. high-energy-physics FY97 grant renewal proposal. It is based in part on
preprint Princeton/HEP/92-09 (Sept. 20, 1992), which contains many references.

1 The Four Classes of CP Violation of Neutral B Mesons

CP violation can be very prominent in the B-meson system because the relevant CP -
violating phases in the CKM matrix occur in first order. This is in contrast to the K-meson
system where CP -violating phases arise in the relevant matrix elements only in higher order.

In decays of neutral B-mesons to self-conjugate final states there are four classes of CP
violation, as can be motivated by the Wolfenstein representation of the CKM matrix. We
note the location of the matrix elements that have imaginary parts (to first order):

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 ≈




Re Re Im
Re Re Re
Im Re Re


 .

The phase of Vtd enters in Bd (but not Bs) mixing due to top-quark exchange in the box
diagram.

The phase of Vub enters in b → u (but not b → c) decays.
Hence there are 4 classes of CP violation in decays of neutral B’s, as listed in Table 1.

Table 1: The four classes of CP violation in the neutral B-meson system.

Class Parent Quark Example CP -Violating

Transition Phase

1 Bd b → c Bd → J/ψKS ϕ1 = ϕ(Vtd)

2 Bd b → u Bd → π+π− ϕ2 = ϕ(Vtd) + ϕ(Vub)

3 Bs b → u Bs → ρKS ϕ3 = ϕ(Vub)

4 Bs b → c Bs → J/ψφ ϕ4 = 0
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For decays of neutral B’s to CP eigenstates f , the observable effect is the decay asym-
metry

A(t) =
Γ(B → f)− Γ(B̄ → f̄)

Γ(B → f) + Γ(B̄ → f̄)
= sin 2ϕi sin xt,

where ϕi is the relevant phase of the CKM matrix element listed above, x = ∆M/Γ is the
mixing parameter, and t is the proper time of the decay measured in units of the lifetime.

As there are three classes of nonzero asymmetries, we can make three measurements of
the two CKM phases, and hence overconstrain the Standard Model.

This insight is also commonly expressed via the unitarity triangle. But it is important
to note that the Standard Model predicts a null effect in a fourth class of decays, which are
perhaps more accessible at hadron colliders than at e+e− colliders.

The above argument is reviewed in greater detail in the subsections after next.

2 The Superweak Model

The superweak model is often used as a vehicle for discussions of alternatives to the Standard
Model of CP violation. In this model CP -violating effects are due to a new interaction that
manifests itself only in the mixing of a neutral meson and its antiparticle. The effect is
small, but different in principle for each type of neutral meson. In the superweak model
there are only two classes of CP violation in the neutral B mesons, one for Bd, and another
for Bs. This contrasts with the four classes discussed above in the Standard Model. Thus
the observation that either

1. sin 2ϕ1 6= sin 2ϕ2, or that

2. sin 2ϕ3 6= sin 2ϕ4

would contradict the superweak model. In the Standard Model it is possible that sin 2ϕ1 =
sin 2ϕ2, but it is extremely unlikely that both equalities would hold simultaneously.

A third confrontation between the superweak and Standard Models is possible with B
mesons:

3. The Standard Model suggests that there will be small but nonzero CP -violating
asymmetries in the decay rates of B+ and B− mesons, while the superweak model
predicts a null effect.

3 The Need for Interference in CP -Violating

Processes

In the Standard Model, CP violation in a process described by a single graph manifests itself
only as a phase factor. If the amplitude for a single graph B → f is written

A(B → f) ≡ Af = |Af | eiφW eiδS , (1)
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where φW is a phase due to the weak interaction, and δS is a phase due to strong final-state
interactions, then the CP conjugate process has amplitude

A(B → f) ≡ Af = |Af | e−iφW eiδS . (2)

Hence CP violation cannot be discerned as a rate difference between a decay and its CP -
conjugate decay if only a single graph contributes to the amplitude.

CP violation can only be revealed in total-rate measurements of B → f and B → f
when there is interference between two or more decay amplitudes with differing weak phases
and differing strong phases. To verify the last remark, consider the case where two graphs
contribute to a decay, written as

A(B → f) = |A1| eiφ1eiδ1 + |A2| eiφ2eiδ2 , (3)

so the CP -conjugate decay has amplitude

A(B → f) = |A1| e−iφ1eiδ1 + |A2| e−iφ2eiδ2 . (4)

The corresponding decay rates are given by

Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ + δ), (5)

and
Γ(B → f) = |A1|2 + |A2|2 + 2 |A1| |A2| cos(φ− δ), (6)

where φ = φ1−φ2 and δ = δ1−δ2. Only if both φ and δ are nonvanishing can the interference
term be determined from measurements of the two decay rates.

Even if this condition is satisfied the strong-interaction phase difference δ and the mag-
nitudes |Af | and

∣∣∣Af

∣∣∣ will not typically be known, and the CP -violating phase cannot be
determined.

4 Neutral B-Meson Decays to CP Eigenstates

The most well-known method for extracting CP -violating phases uses neutral B mesons that
decay to CP eigenstates f . In this case

|f〉 ≡ CP |f〉 = η|f〉 where η =





+1 CP (even)

−1 CP (odd)
. (7)

The decay amplitude can be written

A(B0 → f) = |A| e−iφDeiδ, (8)

where δ is a strong-interaction phase, and the weak-interaction phase φD depends on whether
the decay proceeds via a b → c or u transition:

φD =





φcb = 0, b → c

φub, b → u
. (9)

3



Due to mixing, a particle that was created as a B0 (or B
0
) at t = 0 has evolved by time

t to the state we label as B0(t) (or B
0
(t)) according to

B0(t) = e−iMte−t/2[cos(xt/2)|B0〉+ ie2iφM sin(xt/2)|B0〉],
B

0
(t) = e−iMte−t/2[ie−2iφM sin(xt/2)|B0〉+ cos(xt/2)|B0〉],

(10)

where we measure time in units of the relevant B lifetime, x = ∆M/Γ is the mixing parame-

ter, and the relative amount of |B0〉 and |B0〉 in the weak eigenstate B0
S is given by a pure

phase coming from the mixing box diagram where

φM =





φtd, for B0
d

φts ≈ 0, for B0
s

(11)

Following eq. (2) we can write the amplitude for the CP -conjugate process as

A(B
0 → f) = ηA(B

0 → f) = |A| eiφDeiδ, and hence A(B
0 → f) = η |A| eiφDeiδ, (12)

using eq. (7). Combining eqs. (8-12) with (10) we arrive at the time-dependent decay rates

Γ(B0(t) → f) ∝ |A|2 e−t[1− η sin(xt) sin 2(φM + φD)],

Γ(B
0
(t) → f) ∝ |A|2 e−t[1 + η sin(xt) sin 2(φM + φD)].

(13)

If, as we have assumed, only a single graph contributes to B0 → f , then there is only a single

strong-interaction phase δ in both this and the conjugate reaction B
0 → f . This single phase

does not appear at all in the interference term in eq. (13).
Both φM and φD can take on two values depending on the decay considered, according to

eqs. (9) and (11), so there are four classes of phase angles can be explored by measurements
of neutral B decays to CP eigenstates, as listed in Table 2. Classes 1, 2 and 3 provide
measurements of ϕ1, ϕ2 and ϕ3, respectively, of the unitarity test. Class-4 decays should
show very little CP violation, but not necessarily zero, as they depend on Vts which has
a CP -violating phase at higher order (see eq. (15)). Any difference in the size of the CP
violation between class 1 and class 2, or between class 3 and class 4 would indicate that the
superweak model is not the source of that effect.

The class-1 decay B0
d → J/ψK0

S is particularly easy to trigger on and identify, and may
provide the first evidence for CP violation in the B system. The most prominent class-2 and
-3 decays, B0

d → π+π− and B0
s → ρ0K0

S, respectively, both have smaller branching ratios
and in particular it may prove elusive to measure ϕ3 with B0

s → ρ0K0
S.

Another potential difficulty is that with the exception of B0
d → J/ψK0

S, all other decays
to CP eigenstates have admixtures of penguin diagrams with different weak phases than the
dominant tree diagram. Hence it is useful to have other procedures than the present method
to measure ϕ2 and ϕ3.
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Table 2: The 23 basic neutral-B decays to CP eigenstates. The graphs asso-
ciated with each decay mode are shown in Fig. 1. The subscripts F , S, and
D refer to CKM-favored (amplitude ∝ λ2), -suppressed (∝ λ3), and -doubly-
suppressed (∝ λ4), respectively. The weak-interaction phase φM +φD is shown
in parentheses after each graph type, where φM is the phase due to mixing and
φD is the phase due to b-quark decay. Penguin graphs (V-VII) are included
in classes 1-4 if they lead to the same final state as the nominal graphs for
that class, even though their topology is different. Classes 1a and 4a are pure
penguin graphs. Within each class the modes are ranked roughly in order of
decreasing branching ratio. A final-state π0 could be replaced by an η, ρ0, ω,
etc., and a J/ψ could be replaced by an ηc, χ, ψ′, etc., but final states with
two spin-1 particles must be analyzed according to method 6.

Class B0 b → q Modes Graph(φM + φD)

1 B0
d b → c J/ψK0

S,L IIF (φtd), VIF (φtd)
D+D− IS(φtd), IVS(φtd), VS, VIIS
J/ψπ0 IIS(φtd), VIS
D+

s D−
s IVS(φtd), VS

φK0
S,L VIF (φtd), VIIF (φtd)

2 B0
d b → u π+π− IS(φtd + φub), IVS(φtd + φub), VS, VIIS

π0π0 IIS(φtd + φub), IVS(φtd + φub), VS, VIS, VIIS
ρ0K0

S,L IID(φtd + φub), VIF (φtd), VIIF (φtd)

D0D
0

IVS(φtd + φub), VS

K+K− IVS(φtd + φub), VS

3 B0
s b → u ρ0K0

S,L IIS(φub), VIS(φtd), VIIS(φtd)
K+K− ID(φub), IVD(φub), VF , VIIF
φπ0 IID(φub), VIF
π+π− IVDS(φub), VF ,
π0π0 IVDS(φub), VF ,

4 B0
s b → c D+

s D−
s IF , IVF , VF , VIIF

J/ψK0
S,L IIS, VIS(φtd)

D0D
0

IVF , IVD(φub), VF , VS

D+D− IVF , VF

K0K
0

VF , VIIF

1a B0
s b → s φK0

S,L VIS(φtd), VIIS(φtd)

4a B0
d b → u φπ0 VIS

K0K
0

VS, VIIS
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Figure 1: Seven graphs for the nonleptonic decays of B mesons.

5 Six Ways to Measure CP -Violating Phases in B

Decays

The richness of approach to observing CP violation in B-meson decays is by no means
restricted to the previous example. We briefly list six methods. In practice the largest
signals will likely arise in the decays of neutral B-mesons to CP eigenstates.

1. B decays to D0X, D
0
X, and D0

1,2X where X 6= X

When a B particle can decay both to D0X and D
0
X (and so B decays to both D

0
X

and D0X), then the decays

B → D0
1,2X, and B → D0

1,2X, where D0
1,2 ≡

D0 ±D
0

√
2

, (14)

exhibit a CP -violating asymmetry. Measurement of the six (or eight) decay modes
listed will permit isolation of the CP -violating amplitude, both in magnitude and
phase.

The final state D0X need not be self conjugate, and it is actually desirable that it not
be, so that no effects of mixing are present, and no tagging of the second B is needed.
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Thus method 1 could be used at a symmetric e+e− collider without the penalty due to
mixing of methods 2-6. This method works both for decays of B-mesons and b-baryons.

The general approach of methods 1-3 was largely anticipated by Carter and Sanda,
but recent interest stems from the more specific formulation of Gronau and London.
Method 1 as distinct from method 3 was first examined by Gronau and Wyler, with
further discussions given by Dunietz. Application of method 1 to b-baryons was first
discussed by Aleksan, Dunietz and Kayser.

If CP violation is found in such an analysis then it cannot be due to to superweak
model, which postulates that CP violation occurs only in mixing of neutral mesons.
Thus method 1 may be used to circumvent possible ambiguities in the use of method
4 to prove or disprove the superweak model.

2. Neutral B-meson decays to f and f where f 6= f

If a neutral B-meson decays to both a final state f and its CP -conjugate state f , then
the interference of amplitudes needed for measurable CP violation arises due to mixing
(whether or not there is CP violation in the mixing). A time-dependent analysis of
the four decay modes B(B) → f, f can isolate the CP -violating phase.

Tagging of the particle-antiparticle character of the second B in the event is required.

The original paper on method 2 is by Gronau and London. Discussion of method
2 as separate from method 3 was first been given by Aleksan et al. Method 2 is an
improvement on earlier discussions by Du, Dunietz and Wu, and by Dunietz and Rosner
in which only two of the four related decays were utilized.

3. Neutral B-meson decays to D0X, D
0
X, and D0

1,2X where X = X

If a neutral B-mesons decays to both a final state D0X and D
0
X where X is self

conjugate (CP (X) ≡ X = ±X), then methods 1 and 2 can be combined. In a case of
interest two different CP -violating phases can be determined from the time-dependent
analysis of six (or eight) related decay modes.

As previously mentioned, method 3 was first discussed by Gronau and London.

4. Neutral B-meson decays to CP eigenstates

If a neutral B-meson decays to a final state f that is a CP eigenstate, then as in
method 2, CP violation becomes observable via the interference due to mixing. But
since only a single final state is involved the strong-interaction phase does not appear.
Thus we recover the well-known result that a time dependent analysis of the two modes
B(B) → f can isolate the CP -violating phases.

The advantages of measuring decays to CP eigenstates were first noted by Bigi and
Sanda. The important relation between decays to CP eigenstates and unitarity of the
CKM matrix was first emphasized by Bjorken, and will be reviewed in the following
subsection. The measurement of the three angles of the unitarity triangle by three
specific decays to CP eigenstates was first proposed by Krawczyk et al.
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5. B decays to sets of final states related by isospin

In decays B+
u → f+ and B0

d → f 0 where the final states each arise due to the inference
of two amplitudes, and f+ and f 0 are related by isospin, the CP -violating phase can
be isolated by a detailed isospin analysis.

The utility of the isospin analysis in removing uncertainties due to penguin diagrams
in B decays was first demonstrated by Gronau and London. Further discussions have
been given by Nir and Quinn, by Lipkin et al. and by Gronau.

6. Angular analysis of B decays to mixtures of CP eigenstates

If a neutral B-meson decays to a self-conjugate state f , but this is not a pure CP
eigenstate (as holds when f consists of two spin-1 mesons) method 4 cannot be carried
out. However, a detailed analysis of the angular distribution of the secondary-decay
products can separate the final state into CP (even) and CP (odd) components and the
CP -violating phase extracted.

Methods of angular analysis for B decays to mixtures of CP eigenstates have been
presented for several years with recent discussion by Kayser et al., by Dunietz et al.,
and by Kramer and Palmer.

6 The Unitarity Test

In view of the variety of methods of measuring the phases of the CKM matrix elements
it is useful to have an overall goal in pursuing an experimental program. This has been
elegantly defined by Bjorken as a test of unitarity of the CKM matrix. This will provide a
comprehensive test of the Standard Model view of CP violation as arising from phases in
the transformation between the three generations of strong and weak quark base states.

We will discuss the CKM matrix in the Wolfenstein notation:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




≈



1− λ2/2 + λ4/24 λ Aλ3(ρ− iη)
−λ 1− λ2/2− λ4(A2/8− 1/24) Aλ2

Aλ3(1− ρ− iη) −Aλ2 + Aλ4(1/2− ρ− iη) 1− A2λ4/2


 ,

(15)

carrying the expansion in the parameter λ (≈ the Cabibbo angle) to fourth order. From
measurements of the B-meson lifetime it is known that A ≈ 1. CP violation arises in the
Standard Model because η 6= 0.

The unitarity of VCKM implies that
∑

k

VikV
∗
jk = δij =

∑

k

VkiV
∗
kj. (16)

Of these 18 conditions the one obtained using the first and third rows (or almost equivalently,
the first and third columns) is especially suitable for testing via measurements of weak phase

8



angles:
0 = V ∗

udVtd + V ∗
usVts + V ∗

ubVtb ≈ Vtd + λVts + V ∗
ub. (17)

Regarding Vtd, λVts and Vub as vectors they form a closed triangle in the complex plane. On
dividing their lengths by Aλ3, we obtain the picture of Figure 2 in the (ρ, η) plane.

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
ρ

α

βγ

Bo → ππ, ρπ

Bs → Κsρο, DsK Bo → J/ψΚs

Vtd
| λ Vcb |

Bo → Bo

V*ub
| λ V

V

c

u
*

b

b
||

0.0

0.2

0.4

η

0.6

Figure 2: The unitarity triangle in the (ρ, η) plane. The phase angles
ϕi used in the text relate to the angles in the figure according to ϕ1 =
β, ϕ2 = α and ϕ3 = γ. The shaded region indicates the present
experimental uncertainty in the location of the vertex of the unitartity
triangle.

The unitarity test then consists of measuring the magnitudes and phases of these three
vectors to confirm that they form a closed triangle. It is anticipated that measurement
of the magnitude of Vtd via its role in the box diagram governing B0

d mixing will remain
subject to theoretical uncertainties due to strong-interaction effects for some time to come.
The insight of Bjorken was that a test of the closure of the unitarity triangle can be based
on measurement of the three interior angles, ϕ1, ϕ2, ϕ3, which should sum to π. The
magnitudes of the three angles and the area A2λ6η/2 of the unitarity triangle are invariant
under the choice of representation of the CKM matrix.

In the Wolfenstein parametrization the three angles ϕi can be related to phases of CKM
matrix elements according to

ϕ1 = 2π − φ(Vtd) ≡ 2π − φtd,

ϕ2 = π − ϕ1 − ϕ3 = −π + φtd + φub,

ϕ3 = φ(V ∗
ub) = −φ(Vub) ≡ −φub.

(18)

A favorable theoretical result is that method 4, the study of neutral B decays to CP
eigenstates, can in principle determine all three angles ϕi by measurement of three different
decays. However, the anticipated difficulty in measuring φub via decays such as B0

s → ρ0K0
S,

due to the small branching ratios (and poor signal of Bs at e+e− colliders), has been a
motivation to explore the additional methods of analysis of CP violation reviewed above.
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7 The Einstein-Rosen-Podolsky Effect

If the B0-B
0

pair is produced in a C(odd) or C(even) combination, this quantum-mechanical
correlation is maintained until both B’s decay, even though they may be spatially separated,
and they decay at different times. The complexity of such correlations was remarked by
Einstein, Rosen, and Podolsky in a famous paper in which they argued that this indicates
that quantum mechanics is an incomplete theory. However, no one seriously doubts that the
EPR effect is real.

The application of the EPR effect to the neutral B-meson system was first noted by
Carter and Sanda. Suppose that one B meson (B1) decays to a CP eigenstate f at time t1,
and that the second B meson (B2) decays at time t2 to a state g 6= ḡ (such as B → l±νX)
that allows us to determine whether it was a B or B at time t2. Then the combined decay
asymmetry

A(t1, t2) =
Γ(B1 → f)Γ(B2 → ḡ)− Γ(B1 → f)Γ(B2 → g)

Γ(B1 → f)Γ(B2 → ḡ) + Γ(B1 → f)Γ(B2 → g)
= sin 2ϕ sin(x1t1 ∓ x2t2),

where the minus sign holds for C(odd) states: |B1B2〉 − |B1B2〉.
If we don’t observe the decay times, the integrated asymmetry is

A =
x1 ∓ x2

(1 + x2
1)(1 + x2

2)
sin 2ϕ,

which vanishes for C(odd) states in which B1 = B2 (i.e., BdBd or BsBs).

For B0
d-B

0
d produced at the Υ(4S) at an e+e− collider, we have only C(odd) states, and

hence there will be no signal for CP violation unless one can observe the time evolution. This
is the well-known justification for the construction of an asymmetric e+e− collider, which is
a costly consequence of the EPR effect.

8 Analysis of Time-Resolved Decay Asymmetries

In the previous subsection we noted that our proposed method of analysis of CP violation
in the neutral B system would yield a null result if we integrate over time and if the B-B
pair was produced in a C(odd) state. As the latter condition holds for B’s produced at the
Υ(4S) resonance at an e+e− collider, this analysis would be inappropriate there. A clever
alternative procedure has been proposed that maximizes the analyzing power at an e+e−

collider.
Both B’s of a produced B-B pair must be observed in a CP analysis. We label B1 as the

(neutral) B that decays to the CP eigenstate f , and B2 as the (charged or neutral) B that
decays to a state g 6= ḡ. Observation of the latter decay permits us to determine whether
B2 was a particle or antiparticle at the moment of its decay. This procedure is often called
‘tagging’.

We can accumulate four time distributions, where one B decays at time ta and the other
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at time tb with ta < tb:

I : ΓB1→f (tb)ΓB2→g(ta),

II : ΓB1→f (ta)ΓB2→g(tb),

III : ΓB1→f (tb)ΓB̄2→ḡ(ta),

IV : ΓB1→f (ta)ΓB̄2→ḡ(tb).

The four distributions can be combined to form asymmetries in various ways. Let

A1(ta, tb) ≡ II + III − I − IV

I + II + III + IV
.

Another asymmetry is

A2(ta, tb) ≡ III + IV − I − II

I + II + III + IV
.

A third might be defined as

A3(ta, tb) ≡ I + III − II − IV

I + II + III + IV
.

For the case that mesons 1 and 2 are of the same type the four time distributions take
the form

ΓI(ta, tb) ∝ e−(ta+tb)[1± sin 2ϕ sin x(ta ± tb)],

ΓII(ta, tb) ∝ e−(ta+tb)[1 + sin 2ϕ sin x(ta ± tb)],

ΓIII(ta, tb) ∝ e−(ta+tb)[1∓ sin 2ϕ sin x(ta ± tb)],

ΓIV (ta, tb) ∝ e−(ta+tb)[1− sin 2ϕ sin x(ta ± tb)],

where ϕ is the CP -violating phase in the decay amplitude for B1 → f , x = ∆M/Γ is the
mixing parameter for neutral B-meson, and the lower sign in the distributions holds for
C(odd) states |B1〉|B2〉 − |B1〉|B2〉. In the above, time is measured in units of the lifetime,
1/Γ.

Inserting the time distributions into the forms for the asymmetries we have

A1 =





sin 2ϕ sin x(ta − tb) C(odd)

0 C(even)
,

A2 =





0 C(odd)

sin 2ϕ sin x(ta + tb) C(even)
,

A3 = 0.

Clearly the asymmetry A1 will be useful at an e+e− collider where only C(odd) states are
produced.

In Bd decays where xd ≈ 0.7 there are about nine lifetimes per oscillation, and so a time-
resolved analysis is actually little different than a time-integrated one. Hence it is relevant
to consider the time-integrated forms of the asymmetries.
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Because of the time ordering in the definition of the distributions I-IV , the form of the
integrals is ∫ ∞

0
dta

∫ ∞

ta
dtbΓI(ta, tb),

etc. On evaluating these integrals for the case that meson B1 is of the same type as B2, we
find

A1 =





x sin 2ϕ/(1 + x2) C(odd)

0 C(even)
.

while

A2 =





0 C(odd)

2x sin 2ϕ/(1 + x2)2 C(even)
,

At a hadron collider the B-B pairs are produced in C(even) and C(odd) states with
equal probability, so the question arises as to which asymmetry is to be preferred to attain
maximum sensitivity to the CP -violating factor sin 2ϕ. Note that the nonzero cases of the
asymmetries are affected by the dilution due to mixing in different ways:

A1(C(even)) =
2

1 + x2
A2(C(odd)).

For the case of Bd-Bd production where xd ≈ 0.7, the factor 2/(1+x2) ≈ 4/3, so asymmetry
A1 is slightly to be preferred over A2.

However, at a hadron collider a Bd meson can be produced along with any of a Bu, Bd, or
Bs. Table 3 lists the coefficients K of sin 2ϕ for the various possibilities of B-B production
for the two asymmetries. On weighting by the relative production rates we estimate that A1

is about 1.5 times as large as A2 at a hadron collider, so clearly should be used.

Table 3: The coefficient K in time-integrated CP -violating asymmetries of the
form A = K sin 2ϕ for various possibilities for Bd-B production at a hadron
collider. The Weighted coefficient is obtained supposing xd = 0.7, xs À xd, and
that Bu, Bd, and Bs mesons are produced along with a Bd in the proportion
0.375 : 0.375 : 0.25. We have assumed that the lifetimes of all three flavors of
B mesons are the same.

Asymmetry Bd-Bd Bd-Bu Bd-Bs Weighted

A1
xd

(1+x2
d
)2

xd

1+x2
d

xd

1+x2
d

1
x2

s
≈ 0.25

A2
xd

2(1+x2
d
)

xd

2(1+x2
d
)

1−x2
d/2

1+x2
d
/4

xd

1+x2
d

1
x2

s
≈ 0.16

At hadron colliders one typically considers the asymmetry

A(ta, tb) =
ΓB1→f (ta)ΓB2→ḡ(tb)− ΓB1→f (ta)ΓB2→g(tb)

ΓB1→f (ta)ΓB2→ḡ(tb) + ΓB1→f (ta)ΓB2→g(tb)
= sin 2ϕ sin(x1ta ± x2tb),
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where there was no restriction on ta and tb, and the minus sign holds for C(odd) states.
This asymmetry is not quite the same as A1 or A2, but the time integrated version of this is
identical to the time integrated version of A1. That is, in the time integrated version of A1

we effectively lose sight of the time ordering of ta and tb.
For a final comparison, the coefficient K that holds for use of asymmetry A2 at an e+e−

collider is 0.5. This means that the average dilution due to mixing at an e+e− collider is
one half of that at a hadron collider. Equivalently, we will need four times as many tagged,
reconstructed Bd-B decays at a hadron collider as at an e+e− collider to achieve the same
sensitivity to sin 2ϕ. Stated yet another way, the smallest value of sin 2ϕ that can be resolved
to three standard deviations with N events at a hadron collider is 12/

√
N , while at an e+e−

collider this would be 6/
√

N .
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