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Endplates Under Pure Tension
or Compression

Abstract

In the pursuit of a very thin endplate one is led to consider the limit where the endplate
in under pure tension due to the wire load; no bending. The plate is then a sort of circularly
symmetric suspension bridge. For plates with uniform axial load the resulting shape is a
cubic. Should one desire a domelike endplate under pure compression, simply reverse the
sign of the equation for z(r).

1 Basic Equations

We consider an endplate that is symmetric about the z axis with an axial load, Pz(r) =
force/(area ⊥ to the z axis). Let T (r) be the total tension across the endplate at radius r.
The endplate has shape z(r) that is to be determined.

Assuming the load is entirely balanced by the tension in the endplate the equations for
static equilibrium are that the radial component of the tension is constant,

T (r)√
1 + z′2

= T0 = constant, (radial)

and that the difference in the vertical components of the tension on either side of a ring
element of radial extent dr support the vertical load,

Tz′√
1 + z′2

∣∣∣∣∣
r+dr

− Tz′√
1 + z′2

∣∣∣∣∣
r

= dFz = 2πPzrdr. (axial)

On inserting the radial equation in the axial one we obtain the differential equation

z′′ = 2π
Pz(r)

T0

r.

One could also seek a pure-compression endplate which would be a domelike object. Sim-
ply reverse the sign of the tension above, leading to a sign change in the (linear) differential
equation, and hence a sign change in the equation for the shape of the endplate found below.
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In drift chambers the radial dependence of the axial load depends on the wire pattern.
For a jet chamber the number of wires is the same at all radii, so for a chamber with inner
radius r1 and outer radius r2 with total wire load F0 we have

Pz(r) =
F0

2πr(r2 − r1)
, z′′ =

F0

T0(r2 − r1)
,

z′ =
F0r

T0(r2 − r1)
+ b, z =

F0r
2

2T0(r2 − r1)
+ br + c. (jet chamber)

The desired shape for a jet-chamber endplate is a parabola (as for a suspension bridge). For
a chamber such as that of BaBar where the wire density is uniform we have

Pz(r) =
F0

π(r2
2 − r2

1)
, z′′ =

2F0r

T0(r2
2 − r2

1)
,

z′ =
F0r

2

T0(r2
2 − r2

1)
+b, z = ar3+br+c with a =

F0

3T0(r2
2 − r2

1)
. (uniform chamber)

Thus the shape of an endplate under pure tension from a uniform axial load is a cubic.

2 Boundary Conditions

The solution for the shape of the pure-tension endplate has three constants, T0, b, and c, that
must be determined from appropriate boundary conditions. We will complete the solution
only for the case of uniform axial loading.

From considerations of the construction of a drift chamber, it is useful to choose one
boundary condition as a statement of the fraction ε of the total axial load F0 that is to be
carried by the support at the inner radius r1. Thus the axial load F1 on the inner support is

F1 = εF0.

The constant ε can take on any value; while 0 ≤ ε ≤ 1 would be the more ‘normal’ range,
ε < 0 corresponds to the case that the inner support pulls on the endplate in the same
direction as the wire load, and ε > 1 occurs when the outer support pulls on the endplate.

The axial force F1 on the inner support must balance the axial component of the tension
in the endplate:

F1 = − Tz′√
1 + z′2

∣∣∣∣∣
r1

= −T0z
′(r1) = − F0r

2
1

r2
2 − r2

1

− T0b,

using the previous expresion for z′(r), and hence

T0b = −
(

r2
1

r2
2 − r2

1

+ ε

)
F0.

The remaining two boundary conditions are obtained by fixing the position and slope of
the endplate at the outer radius r2. [Having choosen the load F1 on the inner support, one
is not free in general to fix both the position and slope at the inner support, or even both
the positions at the inner and outer support.] Without loss of generality we take

z(r2) = 0, and z′(r2) = z′2
as the remaining two boundary conditions.
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3 Form of the Endplate

Note that T0z
′
2 is the axial force on the outer support, which is also (1 − ε)F0 according to

the condition on the force at the inner support. Hence

T0 =
(1− ε)F0

z′2
, and so a =

z′2
3(1− ε)(r2

2 − r2
1)

.

The expression for T0b then yields

b = −z′2[εr
2
2 + (1− ε)r2

1]

(1− ε)(r2
2 − r2

1)
,

and the condition z2 = 0 leads to

c =
z′2r2[(ε− 1/3)r2

2 + (1− ε)r2
1]

(1− ε)(r2
2 − r2

1)
.

The cubic equation for the pure-tension endplate is then

z(r) = −z′2[(r
3
2 − r3)/3− (r2 − r)(εr2

2 + (1− ε)r2
1)]

(1− ε)(r2
2 − r2

1)
.

The slope of the endplate is

z′(r) =
z′2[r

2 − (εr2
2 + (1− ε)r2

1)]

(1− ε)(r2
2 − r2

1)
,

which vanishes at
r0 =

√
εr2

2 + (1− ε)r2
1.

4 Example for the BaBar Drift Chamber

Table 1 gives an example relevant to the BaBar drift chamber, choosing ε = 0.4 as the
fraction of the load on the inner support tube, z2 = 0, and slope z′2 = 1.0 at the outer
support tube.

The pure-tension cubic is shown in Fig. 1 along with a circle of the same sagitta. The
circle has radius 0.38 m and is centered at (r, z) = (0.52, 0.26) m.
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Figure 1: The pure-tension cubic form for the endplate with parameters given
in Table 1. A circle with the same sagitta is shown for comparison.

Table 1: Sample parameters for a pure-tension endplate for BaBar.

Inner radius 0.24 m

Outer radius 0.80 m

ε 0.4

z′2 1.0

z′1 -0.667

a 0.954

b −0.832

c 0.177

r0 0.539 m

zmin −0.122 m
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